skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amin, Al"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 12, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available February 17, 2026
  4. Free, publicly-accessible full text available January 10, 2026
  5. Antimony selenide (Sb2Se3) is a promising material for solar energy conversion due to its low toxicity, high stability, and excellent light absorption capabilities. However, Sb2Se3 films produced via physical vapor deposition often exhibit Se-deficient surfaces, which result in a high carrier recombination and poor device performance. The conventional selenization process was used to address selenium loss in Sb2Se3 solar cells with a substrate configuration. However, this traditional selenization method is not suitable for superstrated Sb2Se3 devices with the window layer buried underneath the Sb2Se3 light absorber layer, as it can lead to significant diffusion of the window layer material into Sb2Se3 and damage the device. In this work, we have demonstrated a rapid thermal selenization (RTS) technique that can effectively selenize the Sb2Se3 absorber layer while preventing the S diffusion from the buried CdS window layer into the Sb2Se3 absorber layer. The RTS technique significantly reduces carrier recombination loss and carrier transport resistance and can achieve the highest efficiency of 8.25%. Overall, the RTS method presents a promising approach for enhancing low-dimensional chalcogenide thin films for emerging superstrate chalcogenide solar cell applications. 
    more » « less
    Free, publicly-accessible full text available March 5, 2026
  6. Free, publicly-accessible full text available December 8, 2025
  7. The tandem solar cell presents a potential solution to surpass the Shockley–Queisser limit observed in single-junction solar cells. However, creating a tandem device that is both cost-effective and highly efficient poses a significant challenge. In this study, we present proof of concept for a four-terminal (4T) tandem solar cell utilizing a wide bandgap (1.6–1.8 eV) perovskite top cell and a narrow bandgap (1.2 eV) antimony selenide (Sb2Se3) bottom cell. Using a one-dimensional (1D) solar cell capacitance simulator (SCAPS), our calculations indicate the feasibility of this architecture, projecting a simulated device performance of 23% for the perovskite/Sb2Se3 4T tandem device. To validate this, we fabricated two wide bandgap semitransparent perovskite cells with bandgaps of 1.6 eV and 1.77 eV, respectively. These were then mechanically stacked with a narrow bandgap antimony selenide (1.2 eV) to create a tandem structure, resulting in experimental efficiencies exceeding 15%. The obtained results demonstrate promising device performance, showcasing the potential of combining perovskite top cells with the emerging, earth-abundant antimony selenide thin film solar technology to enhance overall device efficiency. 
    more » « less